The Application of Novel Research Technologies by the Deep Pelagic Nekton Dynamics of the Gulf of Mexico (DEEPEND) Consortium

Authors

Rosanna J. Milligan
Andrea M. Bernard
Nova Southeastern University, Dania Beach, FL
Kevin M. Boswell
Heather D. Bracken-Grissom
Marta A. D’Elia
Florida International University
Sergio deRada
U.S. Naval Research Laboratory, Stennis Space Center, MS
Cole G. Easson
Middle Tennessee State University
David English
University of South Florida
Ron I. Eytan
Texas A&M University at Galveston
Kimberly A. Finnegan
Nova Southeastern University, Dania Beach, FL
Chuanmin Hu
Chad Lembke
University of South Florida
Jose V. Lopez
Nova Southeastern University, Dania Beach, FL
Bradley Penta
U.S. Naval Research Laboratory, Stennis Space Center, MS
Travis Richards
Texas A&M University at Galveston
Isabel C. Romero
University of South Florida
Mahmood Shivji
Nova Southeastern University, Dania Beach, FL
Laura Timm
Florida International University
University of Colorado Denver
Joe D. Warren
Stony Brook University
Max Weber
R. J. David Wells
Texas A&M University at Galveston
Tracey T. Sutton
Nova Southeastern University, Dania Beach, FL

ABSTRACT

The deep waters of the open ocean represent a major frontier in exploration and scientific understanding. However, modern technological and computational tools are making the deep ocean more accessible than ever before by facilitating increasingly sophisticated studies of deep ocean ecosystems. Here, we describe some of the cutting-edge technologies that have been employed by the Deep Pelagic Nekton Dynamics of the Gulf of Mexico (DEEPEND; www.deependconsortium.org) Consortium to study the biodiverse fauna and dynamic physical-chemical environment of the offshore Gulf of Mexico (GoM) from 0 to 1,500 m.

Keywords: deep sea, oceanography, pelagic ecosystems

Trophic Structure: Compound-Specific Stable Isotope Analyses

Table isotope analysis (SIA) is a popular method of delineating food web structure as it provides a view of an organism’s diet over time scales relevant to tissue turnover rates rather than digestion rates. Carbon isotopes ($\delta^{13}C$) are used to determine the relative contribution of different carbon sources (primary producers) to consumers within a food web, while nitrogen isotopes ($\delta^{15}N$) are used to assign consumers to specific trophic positions. However, sampling primary producers in pelagic systems across spatially and temporally comprehensive scales is difficult and expensive.

A powerful supplementary approach to traditional SIA is the use of compound-specific SIA of amino acids (CS-SIA AA), which allows for the designation of trophic positions without the collection of primary producers. The CS-SIA AA method works...
by incorporating data from both “source” and “trophic” amino acids. As an example, CS-SIA AA was applied to three zooplanktivorous fishes from different depths (Figure 1). Despite known similarities in their diet from stomach content analyses, bulk isotope data (particularly δ^{15}N) suggested that Cyclothone obscura may occupy a higher trophic position than Argyropelecus hemigymnus (upper mesopelagic) and Sternoptyx pseudobscura (lower mesopelagic and upper bathypelagic). However, CS-SIA AA analyses suggest that the differences are caused by an enriched δ^{15}N baseline with increasing depth, rather than diet.

Genetic Diversity: Double-Digest Restriction Site–Associated DNA Sequencing

The level of genetic diversity found within a population is used as a proxy to measure population health. Genetic connectivity refers to the amount of genetic information shared and/or exchanged between populations. It is this exchange of genetic material across small or large spatial scales that allows for the introduction of new genes and the ability to adapt following environmental perturbations. For this reason, determining how genetic diversity is shared and exchanged within and across the GoM has huge implications for the recovery and resilience of a species and the ecosystem.

Double-digest restriction site–associated DNA sequencing (ddRADseq) is used to identify large sets of genome-spanning genetic markers to measure genetic diversity. DEEPEND utilized ddRADseq to generate unprecedented amounts of genetic data for an ecologically and functionally important array of deep-sea species (fishes, crustaceans, and cephalopods). These data allowed us to estimate levels of genetic diversity and connectivity across geographically and temporally separated samples collected from the GoM and the Atlantic. This massive sequencing effort, integrated with oceanographic and ecological data, provided an in-depth, high-resolution comparative diagnosis of the health and resilience and recovery potential of the GoM midwater (200–1,500 m) following the *Deepwater Horizon* oil spill.

Microbial Community Analyses: eDNA and High-Throughput Sequencing

DEEPEND partner Nova Southeastern University (NSU) carried out microbial community (“microbiome”) characterization and analyses of the northern GoM. To date, a total of 902 seawater samples were processed, resulting in ~88,000,000 (>60 Gb) of 16S rRNA high-quality bacterioplankton sequences. Additionally, microbiome profiles have been used to detect the movement and boundary of the Loop Current in the GoM and to ground-truth a spatial model of Loop Current dynamics. Further analysis of this system will incorporate nearly 800 collected seawater samples to build a temporal view of microbial community dynamics and assess the forces that structure these communities from the surface to bathypelagic.

Assessment of Polycyclic Aromatic Hydrocarbons in Mesopelagic Fishes

Mesopelagic fish samples were collected in 2015 and 2016 from the northern GoM to better understand mechanisms of bioaccumulation of toxic compounds including polycyclic aromatic hydrocarbons (PAHs).
Results indicated relatively high PAH concentrations in the unhatched eggs, within the range observed to cause mortality and sublethal effects in embryonic and juvenile fishes (Figure 2). Further studies are recommended for integrating PAH concentrations with population dynamics, due to the potential long-term impacts on deep pelagic communities.

Estimating Faunal Biomass and Behavioral Patterns: Acoustic Technologies

Sound-scattering layers (SSLs) are dynamic; therefore, understanding how the community structure within SSLs varies will help better characterize the important ecological role these organisms play across spatial and temporal scales. As part of the DEEPEND program, we use acoustic technologies to examine how SSL distributions respond to oceanographic conditions and focus on linking scattering responses to community level dynamics across the northern GoM (Figure 3).

Relative to net sampling, acoustic technologies provide increased spatial (c. 1 m vertically, 10 m horizontally) and temporal (c. 1–5 s) resolution on the variability of the vertically migrating mesopelagic and bathypelagic communities, as well as the horizontal extent and magnitude of persistent SSLs.

To better study these communities, we deployed a Simrad wideband autonomous echosounder transceiver (WBAT) operating from 55 to 95 kHz and from 165 to 250 kHz, within the migrating SSLs during three DEEPEND survey campaigns (2016–2018). We deployed the WBAT in two different configurations: mounted to the MOCNESS frame with transducers aimed into the sampled volume of the net or attached to the conductivity, temperature, depth (CTD) rosette and suspended at depth to acquire high-resolution data within the migrating SSLs. By placing the echosounder closer to the animals at depth, we could count and measure individual animals and examine patterns in density and behavior without the need for lights or direct capture (Figure 4).

The data products that result from this technology will extend our understanding of the fine-scale structure of SSLs. These data will allow us to (1) investigate high-resolution, wideband scattering responses of the mesopelagic organisms that contribute to the SSLs; (2) examine the spatial heterogeneity of SSLs and determine the scales of patchiness; and (3) quantify *in-situ* density estimates of dominant scatterers to compare directly to acoustic data from shipboard echosounders and the MOCNESS samples.

Near-Surface Bio-optical Observations to Aid Deep Water Measurements

The northern GoM contains distinct water masses and dynamic current features, and the near-surface waters provide a pathway for flow of energy and the exchange of materials between the surface and deeper waters.
Multiple images from Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Aqua and Terra satellites (e.g., Satellite Data Products at https://optics.marine.usf.edu) were combined into relatively cloud-free composite images and transmitted to the research vessel to aid adaptive sampling of the moving waters of the GoM. An example of such a composite is shown in Figure 5, where the ship and glider tracks passed through several frontal features.

During DEEPEND cruises, an updated HOBILabs HS6 and several fluorometers were profiled from the surface to a depth of about 250 m, shortly before or after the CTD cast. The HS6 measured light backscattered at six wavelengths, while the fluorometers measured fluorescence of chlorophyll and colored dissolved organic matter. Combining scattering and fluorescence measurements with information from the instruments on the CTD rosette not only allows estimation of the vertical distribution of phytoplankton but also provides information about the characteristics of living and nonliving particles.

When sampling stations were occupied during the midday period, remote sensing reflectance measurements ($R_{rs}(\lambda), \text{sr}^{-1}$) were collected from the ship. These $R_{rs}(\lambda)$ measurements assess the spectral reflectance of the sea surface, which can be used to evaluate accuracy of satellite measurements or develop bio-optical inversion algorithms relating surface water properties to above-water measurements.

Physical and Chemical Profiles of the Water Column: Slocum Electric Glider

The University of South Florida’s (USF) 1,000-m Slocum electric glider was deployed in August 2015 (Figure 6c) to characterize the upper 400 m of the pelagic ocean. All gliders deployed during DEEPEND were equipped with bio-optical-physical
sensors, including a Seabird SBE41 CP CTD sensor. The glider temperature and salinity data were assimilated into the Hybrid Coordinate Ocean Model (HYCOM; Figure 6), which was used to support the DEEPEND cruises. In August 2015, for example, the glider operated to 200 m (Figure 6) and then 400 m (not shown). It transited south-easterly in an anticyclonic path at the edge of the Loop Current, and it was recovered on August 22 after 12 days of sampling (Figure 6c).

Summary

The data collected during the DEEPEND cruises have enabled various studies to understand the oceanic environments in the northern GoM including remote sensing studies of surface salinity changes (Chen & Hu, 2017); evaluation of atmospheric correction schemes for satellite measurements (Zhang et al., 2018); development of validation criteria for satellite-derived ocean properties (Barnes et al., 2019); the use of glider data to observe vertical migration of Karenia brevis (Hu et al., 2016); the influence of light and oceanographic structuring on acoustically observed deep scattering layer patterns (Boswell et al., 2018); the use of genome-scale ddRADseq methods to elucidate genetic diversity and connectivity patterns, and phylogenetic diversity in cephalopods (Timm et al., 2018b), crustaceans (Robalino et al., 2016; Timm & Bracken-Grissom, 2015; Timm et al., 2018a, 2018c), and fishes; use of molecular genetics to characterize microbial community structures (Easson & Lopez, 2018), which in turn can support the identification of mesoscale oceanographic features (Johnston et al., 2018); the use of PAHs to understand bioaccumulation patterns of toxic compounds in deep-pelagic fauna; and use of the HYCOM model to classify and predict physical oceanographic features in the GoM (deRada & Penta, 2018; Johnston et al., 2018). Altogether, this work represents substantial progress in understanding how pelagic ecosystems are structured and connected through the GoM across a range of spatial and temporal scales, the physical and chemical drivers that most strongly influence the fauna, and improves our understanding of how these ecosystems may be influenced by anthropogenic impacts in the future.

Acknowledgments

This research was made possible by a grant from The Gulf of Mexico Research Initiative. Data are publicly available through the Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC) at https://data.gulfresearchinitiative.org. Faunal images were taken by Danté Fenolio.

Corresponding Author:
Rosanna J. Milligan
Halmos College of Natural Sciences and Oceanography
Nova Southeastern University
8000 N. Ocean Drive
Dania Beach, FL 33004
Email: R.Milligan@nova.edu

References

This article was published in the MTS Journal (© Marine Technology Society): Milligan et al. (2018). The Application of Novel Research Technologies by the Deep Pelagic Nekton Dynamics of the Gulf of Mexico (DEEPEND) Consortium. Marine Technology Society Journal, 52(6): 81–86. http://dx.doi.org/10.4031/MTSJ.52.6.10. This article is for personal use only, and is not to be distributed in any format. The Marine Technology Society is a not-for-profit, international, professional association. Founded in 1963, the Society believes that the advancement of marine technology and the productive, sustainable use of the oceans depend upon the active exchange of ideas between government, industry and academia. See www.mtsociety.org.